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Abstract

Using Lyapunov and Lyapunov-like functionals, we study the sta-

bility and boundedness of the solutions of a system of Volterra integro-

differential equations. Our results, also extending some of the more

well-known criteria, give new sufficient conditions for stability of the

zero solution of the nonperturbed system, and prove that the same

conditions for the perturbed system yield boundedness when the per-

turbation is L
2.
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1 Introduction

We consider the stability and boundedness of solutions of systems of Volterra

integro-differential equations, with forcing functions, of the form

d

dt
[x(t)] = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds + h(t) , (1)
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in which A(t) is an n × n matrix function continuous on [0,∞), B(t, s) is

an n × n matrix continuous for 0 ≤ s ≤ t < ∞, f and g are n × 1 vector

functions continuous on (−∞,∞) and h is an n × 1 vector function defined

almost everywhere on [0,∞). Here, h(t) represent the forcing functions or

external disturbances or inputs into system (1).

The qualitative behaviour of the solutions of systems of Volterra integro-

differential equations, especially the case where f(x) = g(x) = x and h(t) =

0, has been thoroughly analyzed by many researchers. Among the contri-

butions in the 1980s, those of Burton are worthy of mention. His work ([1],

[2]) laid the foundation for a systematic treatment of the basic structure and

stability properties of Volterra integro-differential equations, mainly, via the

direct method of Lyapunov. This paper essentially looks into some of the

many interesting results established by Burton and proposes ways of utiliz-

ing the form of the Lyapunov functionals proposed by Burton to construct

new or similar ones for system (1).

Now, if f(0) = g(0) = 0 and h(t) = 0, then system (1) reduces to

d

dt
[x(t)] = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds , (2)

so that x(t) ≡ 0 is a solution of (2) called the zero solution. The initial

conditions for integral equations such as (1) or (2) involve continuous initial

functions on an initial interval , say, x(t) = φ(t) for 0 ≤ t ≤ t0. Hence,

x(t; t0, φ), t ≥ t0 ≥ 0 denotes the solution of (1) or (2), with the initial

function φ : [0, t0] → Rn assumed to be bounded and continuous on [0, t0].

The definitions of the stability and the boundedness of solutions of (1) are

given in Burton [1]. It is assumed that the functions in (1) are well-behaved,

that continuous initial functions generate solutions, and that solutions which

remain bounded can be continued.
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2 The Scalar Equation

2.1 Nonperturbed Case

Consider the scalar equation

x′(t) = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds . (3)

We suppose that

A(t) is continuous for 0 ≤ t < ∞; (4)

B(t, s) is continuous for 0 ≤ s ≤ t < ∞; (5)
∫ t

0

|B(u, s)|du is defined and continuous for 0 ≤ s ≤ t < ∞; (6)

f(x) and g(x) are continuous on (−∞,∞); (7)

xf(x) > 0 ∀x 6= 0 , and f(0) = g(0) = 0 . (8)

For comparison sake, we first state Burton’s theorem regarding the stability

of the zero solution of (3).

Theorem 1 (Burton [3]). Let (4)–(8) hold and suppose there are constants

m > 0 and M > 0 such that g2(x) ≤ m2 f 2(x) if | x |≤ M . Define

β(t, k) = A(t) + k

∫

∞

t

|B(u, t)|du +
1

2

∫ t

0

|B(t, s)|ds

If there exists k > 0 with m2 < 2k and β(t, k) ≤ 0 for t ≥ 0, then the zero

solution of (3) is stable.

We next state an extension of Theorem 1, which Burton proved via the

Lyapunov functional

V1(t, x(·)) =

∫ x

0

f(s)ds + k

∫ t

0

∫

∞

t

|B(u, s)|duf 2(x(s))ds , (9)

the time-derivative along a trajectory of (3) of which is,

V ′

1(3) ≤ β(t, k)f 2(x) − (2k − m2)

∫ t

0

|B(t, s)|f 2(x(s))ds ≤ β(t, k)f 2(x) .
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In the process, and motivated by the work of Miyagi et. al in the construction

of generalized Lyapunov functions for power systems [4] and single-machine

systems [5], we propose a new Lyapunov functional. As a simple example will

show, the new stability criterion may be used in situations where Theorem 1

cannot be applied.

Theorem 2. Let (4)–(8) hold, with A(t) < 0, and suppose there are constants

m > 0 and M > 0 such that g2(x) ≤ m2 f 2(x) if |x| ≤ M , (10)

α > 4 and N > 0 such that 4x2 ≤ (α − 4) f 2(x) if |x| ≤ N , and(11)

J ≥ 1 such that − 1

4A(t)

∫ t

0

|B(t, s)|ds <
1

J
for every t ≥ 0 .(12)

Suppose further there is some constant k > 0 such that

(1 + α)m2

J
< k , (13)

and

A(t) + k

∫

∞

t

|B(u, t)|du ≤ 0 (14)

for t ≥ 0. Then the zero solution of (3) is stable.

Proof. Consider the functional

V2(t, x(·)) =
1

2
x2 +

√
α

∫ x

0

√

uf(u) du +
1

2
α

∫ x

0

f(u)du

+ k

∫ t

0

∫

∞

t

|B(u, s)|duf 2(x(s))ds .

We have, along a trajectory of (3),

V ′

2(3) = x x′ +
√

α
√

xf(x) x′ +
1

2
αf(x) x′

+
d

dt

[

k

∫ t

0

∫

∞

t

|B(u, s)|duf 2(x(s))ds

]

.

Recalling that A(t) < 0 for all t ≥ 0 and noting that the Schwarz inequality

yields,

(
∫ t

0

B(t, s)g(x(s))ds

)2

≤
∫ t

0

|B(t, s)|ds

∫ t

0

|B(t, s)|g2(x(s))ds,
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we have,

x x′ = A(t)xf(x) + x

∫ t

0

B(t, s)g(x(s))ds

= A(t)xf(x) −
(

√

−A(t) x − 1

2
√

−A(t)

∫ t

0

B(t, s)g(x(s))ds

)2

−A(t)x2 − 1

4A(t)

(
∫ t

0

B(t, s)g(x(s))ds

)2

≤ A(t)xf(x) − 1

4
(α − 4)A(t)f 2(x)

− 1

4A(t)

∫ t

0

|B(t, s)|ds

∫ t

0

|B(t, s)|g2(x(s))ds

≤ A(t)xf(x) − 1

4
(α − 4)A(t)f 2(x) +

m2

J

∫ t

0

|B(t, s)|f 2(x(s))ds

= A(t)xf(x) − 1

4
αA(t)f 2(x) + A(t)f 2(x) +

m2

J

∫ t

0

|B(t, s)|f 2(x(s))ds ,

and

√
α
√

xf(x) x′ = −
( √

α

2
√

−A(t)
x′ −

√

−A(t)
√

xf(x)

)2

− A(t)xf(x) − α

4A(t)
(x′)2

≤ −A(t)xf(x) − 1

4
αA(t)f 2(x) − 1

2
αf(x)

∫ t

0

B(t, s)g(x(s))ds

− α

4A(t)

(
∫ t

0

B(t, s)g(x(s))ds

)2

≤ −A(t)xf(x) − 1

4
αA(t)f 2(x) − 1

2
αf(x)

∫ t

0

B(t, s)g(x(s))ds

+
m2α

J

∫ t

0

|B(t, s)|f 2(x(s))ds .

The third and fourth terms of V ′

2(3) yield

1

2
αf(x) x′ =

1

2
αA(t)f 2(x) +

1

2
αf(x)

∫ t

0

B(t, s)g(x(s))ds ,
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and

d

dt

[

k

∫ t

0

∫

∞

t

|B(u, s)|duf 2(x(s))ds

]

= k

∫

∞

t

|B(u, t)|duf 2(x)

− k

∫ t

0

|B(t, s)|f 2(x(s))ds ,

respectively.

Thus,

V ′

2(3) ≤
[

A(t) + k

∫

∞

t

|B(u, t)|du

]

f 2(x)

−
[

k − m2(1 + α)

J

]
∫ t

0

|B(t, s)|f 2(x(s))ds ,

which will be nonpositive if equations (13) and (14) are satisfied.

Finally, to prove the positive definiteness of V2, we see that if we define

r(u) =



















(√
u + 1

2

√
α
√

f(u)
)2

, u ≥ 0 ,

−
(√

−u − 1
2

√
α
√

−f(u)
)2

, u < 0 ,

then we can rewrite V2 as

V2(t, x(·)) =

∫ x

0

r(u)du +
1

4
α

∫ x

0

f(u)du

+ k

∫ t

0

∫

∞

t

|B(u, s)|duf 2(x(s))ds ,

which is clearly positive definite given that ur(u) > 0 for u 6= 0.

This completes the proof of Theorem 2.

Thus, we have proposed an alternate stability criterion for the scalar

equation (3), and the criterion may be considered for cases where Burton’s

Theorem 1, though simpler, cannot be applied.

Example 1. For the equation

x′ = −x +

∫ t

0

1

(1 + t − s)2

[

x2(s) +
1

2
x(s)

]

ds ,
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both Theorems 1 and 2 establish the stability of the zero solution. To see

this, Theorem 1 yields M = m − 1/2 so that |x| ≤ m − 1/2. Also, we have

β(t, k) < −1 + k + 1/2 ≤ 0 so that 0 < k ≤ 1/2. From m2 < 2k, we have,

if we choose k = 1/2, the inequality 0 < m < 1. Thus, we may choose

1/2 < m < 1 to satisfy all conditions of Theorem 1. Theorem 2 yields, from

(10), M = m − 1/2. From (11), α ≥ 8 and N = ∞. From (12), 4 > J .

From (13), 0 < 9m2/4 < k if we pick α = 8. From (14), 0 < k ≤ 1. Choose

k = 1. Then 0 < m < 2/3. Thus, we may choose 1/2 < m < 2/3 to satisfy

all conditions of Theorem 2.

2

Example 2. Analysis via Theorem 2 shows that the zero solution of

x′ = −x +

∫ t

0

e−(t−s)/2

[

x2(s) +
1

4
x(s)

]

ds ,

is stable. That is, Theorem 2 yields, from (10), M = m − 1/4. From (11),

α ≥ 8 and N = ∞. From (12), 2 > J . From (13), 0 < 9m2/2 < k if we pick

α = 8. From (14), 0 < k ≤ 1/2. Choose k = 1/2. Then 0 < m < 1/3. Thus,

we may choose 1/4 < m < 1/3 to satisfy all conditions of the theorem.

Theorem 1 is not applicable.

2

2.2 Perturbed Case

The next two results, which extend Theorem 1 and Theorem 2, give a class

of forcing functions that maintains the boundedness of the solutions of the

equation

x′(t) = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds + h(t) , (15)

where h : [0,∞) → R is defined almost everywhere on [0,∞).

Theorem 3. Let (4)–(8) hold and suppose there is a constant m > 0 such

that g2(x) ≤ m2 f 2(x) for all x ∈ R. Define

β(t, k) = A(t) + k

∫

∞

t

|B(u, t)|du +
1

2

∫ t

0

|B(t, s)|ds
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and let there be constants ρ > 0 and k > 0 such that m2 < 2k and β(t, k) ≤
−ρ for t ≥ 0. If

∫ x

0

f(x)dx → ∞ as |x| → ∞ , (16)

and

h(·) ∈ L2[0,∞) ,

then all solutions of (15) are bounded.

Proof. Let ε > 0 and consider the functional

V3(t, x(·)) = V1(t, x(·)) +
1

4ε

∫

∞

t

h2(u)du .

Since
∫

∞

0

[h(u)]2du < ∞ ,

we have,

d

dt

[
∫

∞

t

h2(u)du

]

=
d

dt

[
∫

∞

0

h2(u)du−
∫ t

0

h2(u)du

]

= −h2(t) ,

implying, therefore, the differentiability and hence the existence on [0,∞) of

the second term of the functional V3. Thus, we have

V3
′

(15) ≤ β(t, k)f 2(x) + f(x)h(t) − 1

4ε
h2(t)

≤ −ρf 2(x) + εf 2(x) +
1

4ε
h2(t) − 1

4ε
h2(t)

= −(ρ − ε)f 2(x) .

This completes the proof of Theorem 3 since we can always find some ε > 0

small enough such that (ρ − ε) > 0. Note that (16) ensures the radial

unboundedness of V3.

In the same fashion, we prove the following extension of Theorem 2.

Theorem 4. Let (4)–(8) hold, with A(t) < 0, and suppose there are constants

m > 0 such that g2(x) ≤ m2 f 2(x) for all x ∈ R ,

α > 4 such that 4x2 ≤ (α − 4) f 2(x) for all x ∈ R , and

J ≥ 1 such that − 1

4A(t)

∫ t

0

|B(t, s)|ds <
1

J
for every t ≥ 0 .
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Further, suppose there are constants k > 0 and ρ > 0 such that

(1 + α)m2

J
< k ,

and

A(t) + k

∫

∞

t

|B(u, t)|du ≤ −ρ ,

for all t ≥ 0. If h(·) ∈ L2[0,∞), then all solutions of (15) are bounded.

Proof. For ε > 0, the functional

V4(t, x(·)) = V2(t, x(·)) +
1

4ε

∫

∞

t

h2(u)du ,

yields, given the definition,

τ =





√√
α − 4

2
+
√

α





2

,

the time-derivative,

V4
′

(15) ≤
[

A(t) + k

∫

∞

t

|B(u, t)|du

]

f 2(x)

+

[

x +
√

α
√

xf(x) +
1

2
αf(x)

]

h(t) − 1

4ε
h2(t)

≤ −ρf 2(x) +
[

√

|x| +
√

α
√

|f(x)|
]2

h(t) − 1

4ε
h2(t)

≤ −ρf 2(x) +





√√
α − 4

2

√

|f(x)| +
√

α
√

|f(x)|





2

h(t) − 1

4ε
h2(t)

= −ρf 2(x) + τ |f(x)|h(t) − 1

4ε
h2(t)

≤ −ρf 2(x) + τ 2εf 2(x) +
1

4ε
h2(t) − 1

4ε
h2(t)

= −
[

ρ − τ 2ε
]

f 2(x) .

This completes the proof of Theorem 4 since we can always find some ε > 0

small enough such that (ρ− τ 2ε) > 0. We note that V4 → ∞ if |x| → ∞.
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3 The Vector Equation

3.1 Nonperturbed Case

First, we consider the nonperturbed system (2). If we suppose that f , g ∈
C1[Rn,Rn], then we can define

D(x) = [dij(x)]n×n with dij(x) =

∫ 1

0

∂fi(ux)

∂(uxj)
du ,

and

E(x) = [eij(x)]n×n with eij(x) =

∫ 1

0

∂gi(ux)

∂(uxj)
du ,

which are defined for all x ∈ Rn. Hence, assuming f(0) = g(0) = 0, sys-

tem (2) can be written as

x′(t) = A(t)D(x(t))x(t) +

∫ t

0

B(t, s)E(x(s))x(s) ds , (17)

the i-th component of which is

x′

i(t) = aii(t)






dii(x)xi +

n
∑

j=1

j 6=i

dij(x)xj







+

n
∑

j=1

j 6=i

aij(t)






dji(x)xi +

n
∑

k=1

k 6=i

djk(x)xk







+
n
∑

k=1

∫ t

0






bii(t, s)eik(x(s)) +

n
∑

j=1

j 6=i

bij(t, s)ejk(x(s))






xk(s)ds ,

noting that in the above equation dij(x)xj and eij(x)xj, for i, j = 1, . . . , n,

are continuously differentiable with respect to x ∈ Rn simply for the reason

that D(x)x = f(x) and E(x)x = g(x) with f , g ∈ C1[Rn,Rn].

The next result is new.
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Theorem 5. Let f , g ∈ C1[Rn,Rn] , f(0) = g(0) = 0 and

βi(t,x) = aii(t)dii(x) +

n
∑

j=1

j 6=i

aij(t)dji(x)

+
1

2

n
∑

j=1

j 6=i

[|aii(t)dij(x)| + |ajj(t)dji(x)| + |aji(t)dii(x)| + |aij(t)djj(x)|]

+
1

2

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i
k 6=j

[|aik(t)dkj(x)| + |ajk(t)dki(x)|]

+
1

2

n
∑

k=1

∫

∞

t






|bkk(u, t)|e2

ki(x) +

n
∑

j=1

j 6=i

|bkj(u, t)|e2
ji(x)






du

+
n

2

∫ t

0






|bii(t, s)| +

n
∑

j=1

j 6=i

|bij(t, s)|






ds .

(18)

Suppose βi(t,x) ≤ 0 for i = 1, . . . , n, t ≥ 0 and x ∈ Rn. Then the zero

solution of system (2) is stable.

Proof. Consider the functional

V5(t,x(·)) =
1

2

n
∑

i=1

x2
i (t)

+
1

2

n
∑

i=1

n
∑

k=1

∫ t

0

∫

∞

t






|bii(u, s)|e2

ik(x(s)) +
n
∑

j=1

j 6=i

|bij(u, s)|e2
jk(x(s))






dux2

k(s)ds .
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Now,

1

2

n
∑

i=1

d

dt

[

x2
i /2
]

(2)
=

n
∑

i=1

xix
′

i

=

n
∑

i=1

xi











aii(t)






dii(x)xi +

n
∑

j=1

j 6=i

dij(x)xj







+
n
∑

j=1

j 6=i

aij(t)






dji(x)xi +

n
∑

k=1

k 6=i

djk(x)xk







+
n
∑

k=1

∫ t

0






bii(t, s)eik(x(s)) +

n
∑

j=1

j 6=i

bij(t, s)ejk(x(s))






xk(s)ds











≤
n
∑

i=1











aii(t)dii(x) +

n
∑

j=1

j 6=i

aij(t)dji(x)











x2
i +

n
∑

i=1

n
∑

j=1

j 6=i

aii(t)dij(x)xjxi

+
n
∑

i=1

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i

aij(t)djk(x)xkxi

+
1

2

n
∑

i=1

n
∑

k=1

∫ t

0

|bii(t, s)|[e2
ik(x(s))x2

k(s) + x2
i ]ds

+
1

2

n
∑

i=1

n
∑

k=1

n
∑

j=1

j 6=i

∫ t

0

|bij(t, s)|[e2
jk(x(s))x2

k(s) + x2
i ]ds

=
n
∑

i=1











aii(t)dii(x) +
n
∑

j=1

j 6=i

aij(t)dji(x) +
n

2

∫ t

0






|bii(t, s)| +

n
∑

j=1

j 6=i

|bij(t, s)|






ds











x2
i

+

n
∑

i=1

n
∑

j=1

j 6=i

aii(t)dij(x)xjxi +

n
∑

i=1

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i

aij(t)djk(x)xkxi

+
1

2

n
∑

i=1

n
∑

k=1

∫ t

0






|bii(t, s)|e2

ik(x(s)) +
n
∑

j=1

j 6=i

|bij(t, s)|e2
jk(x(s))






x2

k(s)ds ,
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where

n
∑

i=1

n
∑

j=1

j 6=i

aii(t)dij(x)xjxi ≤ 1

2

n
∑

i=1

n
∑

j=1

j 6=i

[|aii(t)dij(x)| + |ajj(t)dji(x)|] x2
i ,

and

n
∑

i=1

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i

aij(t)djk(x)xkxi

=

n
∑

i=1

n
∑

j=1

j 6=i

aji(t)dii(x)xjxi +

n
∑

i=1

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i
k 6=j

aik(t)dkj(x)xjxi

≤ 1

2

n
∑

i=1

n
∑

j=1

j 6=i

[|aji(t)dii(x)| + |aij(t)djj(x)|] x2
i

+
1

2

n
∑

i=1

n
∑

j=1

j 6=i

n
∑

k=1

k 6=i
k 6=j

[|aik(t)dkj(x)| + |ajk(t)dki(x)|]x2
i .

Also, we have

1

2

n
∑

i=1

n
∑

k=1

d

dt







∫ t

0

∫

∞

t






|bii(u, s)|e2

ik(x(s)) +
n
∑

j=1

j 6=i

|bij(u, s)|e2
jk(x(s))






dux2

k(s)ds







=
1

2

n
∑

i=1

n
∑

k=1











∫

∞

t






|bii(u, t)|e2

ik(x(t)) +

n
∑

j=1

j 6=i

|bij(u, t)|e2
jk(x(t))






dux2

k(t)

−
∫ t

0






|bii(t, s)|e2

ik(x(s)) +

n
∑

j=1

j 6=i

|bij(t, s)|e2
jk(x(s))






x2

k(s)ds











=
1

2

n
∑

i=1

n
∑

k=1











∫

∞

t






|bkk(u, t)|e2

ki(x(t)) +
n
∑

j=1

j 6=i

|bkj(u, t)|e2
ji(x(t))






dux2

i (t)

−
∫ t

0






|bii(t, s)|e2

ik(x(s)) +

n
∑

j=1

j 6=i

|bij(t, s)|e2
jk(x(s))






x2

k(s)ds











.
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Thus,
d

dt
[V5](2) ≤

n
∑

i=1

βi(t,x)x2
i ≤ 0 .

Moreover, V5 is clearly positive definite, given that

V5(t,x(·)) ≥ 1

2

n
∑

i=1

x2
i (t) .

Hence, we obtain the conclusion of Theorem 5.

Putting n = 1 in Theorem 5 yields a new stability criterion for the scalar

case (3),

x′(t) = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds ,

rewritten as

x′(t) = A(t)D(x(t))x(t) +

∫ t

0

B(t, s)E(x(s))x(s)ds,

on the assumption that f, g ∈ C1[R,R] and f(0) = g(0) = 0, and on letting

D(x) =















f(x)

x
, x 6= 0 ,

f ′(0), x = 0 ,

and E(x) =















g(x)

x
, x 6= 0 ,

g′(0), x = 0 .

Now, if n = 1, then, from (18),

β1(t, x1) = a11(t)d11(x1) +
1

2

∫

∞

t

|b11(u, t)|due2
11(x1) +

1

2

∫ t

0

|b11(t, s)|ds .

Putting x1 = x, a11(t) = A(t), d11(x1) = D(x), e11(x1) = E(x) and b11(t, s) =

B(t, s), we have the following result:

Corollary 1. Let f, g ∈ C1[R,R], f(0) = g(0) = 0 and

β(t, x) = A(t)D(x) +
1

2
E2(x)

∫

∞

t

|B(u, t)| du +
1

2

∫ t

0

|B(t, s)| ds .

If β(t, x) ≤ 0 for t ≥ 0 and x ∈ R, then the zero solution of (3) is stable.
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Proof. Using V5, with n = 1, so that

V5(t, x(·)) =
1

2
x2(t) +

1

2

∫ t

0

∫

∞

t

|B(u, s)|duE2(x(s))x2(s)ds ,

we get
d

dt
[V5](3) ≤ β(t, x)x2 ≤ 0 .

Corollary 1 is thus proved.

Example 3. For the equation

x′ = −et

(

x +
sin x

2

)

+ k

∫ t

0

e−(t−s)[1 − cos x(s)] ds , k > 0 , (19)

Corollary 1 is easier than either Theorem 1 or Theorem 2 to apply. Thus,

we have, for all t ≥ 0 and x 6= 0,

β(t, x) = −et

(

1 +
1

2

sin x

x

)

+
1

2

[

k

(

1 − cos x

x

)2

+ k
(

1 − e−t
)

]

≤ −et +
1

2
et

∣

∣

∣

∣

sin x

x

∣

∣

∣

∣

+
k

2

(

1 − cos x

x

)2

+
k

2

∣

∣1 − e−t
∣

∣

≤ −et +
1

2
et + k ≤ −1

2
+ k ,

so that β(t, x) ≤ 0 if 0 < k ≤ 1/2. Moreover, for these values of k,

β(t, 0) = −3

2
et +

k

2
|1 − e−t| ≤ −3

2
+

k

2
< 0 .

Hence, by Corollary 1, the zero solution of (19) is stable if k ∈ (0, 1/2].
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Example 4. The system

[

x′

1(t)

x′

2(t)

]

=

[

a11(t) a12(t)

a21(t) a22(t)

][

f1(x1(t), x2(t))

f2(x1(t), x2(t))

]

+

∫ t

0

[

b11(t, s) b12(t, s)

b21(t, s) b22(t, s)

][

g1(x1(s), x2(s))

g2(x1(s), x2(s))

]

ds ,

is stable if f , g ∈ C1[R2,R2], with f(0) = g(0) = 0, and if for c1, c2 > 0,

t ≥ 0 and x ∈ R2, we have, using (18) and condition (b) of Theorem 5,

β1(t,x)x2
1 = {a11(t)d11(x) + a12(t)d21(x)

+
1

2
[|a11(t)d12(x)| + |a22(t)d21(x)| + |a21(t)d11(x)| + |a12(t)d22(x)|]

+
1

2

∫

∞

t

[

|b11(u, t)e2
11(x)| + |b12(u, t)e2

21(x)| + 2|b22(u, t)e2
21(x)|

]

du

+

∫ t

0

[|b11(t, s)| + |b12(t, s)|] ds}x2
1 ≤ −c1x

2
1 ,

and

β2(t,x)x2
2 = {a22(t)d22(x) + a21(t)d12(x)

+
1

2
[|a22(t)d21(x)| + |a11(t)d12(x)| + |a12(t)d22(x)| + |a21(t)d11(x)|]

+
1

2

∫

∞

t

[

2|b11(u, t)e2
12(x)| + |b22(u, t)e2

22(x)| + |b21(u, t)e2
12(x)|

]

du

+

∫ t

0

[|b22(t, s)| + |b21(t, s)|] ds}x2
2 ≤ −c2x

2
2 .

The following simple, but illustrative, case is one such stable system:

[

x′

1(t)

x′

2(t)

]

=











10

t + 1
−20

−20
10

t + 1





















x2(t) −
1

20
x1 tanh(x1(t))

x1(t) +
1

20
x2 tanh(x2(t))











+

∫ t

0







1

(1 + t − s)2
0

0
1

4[(t − s)2 + 1]







[

x1(s) + x2(s)

x1(s) + x2(s)

]

ds ,

(20)
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or, in the form of (17),

[

x′

1(t)

x′

2(t)

]

=











10

t + 1
−20

−20
10

t + 1





















− 1

20
tanh(x1(t)) 1

1
1

20
tanh(x2(t))

















x1(t)

x2(t)







+

∫ t

0







1

(1 + t − s)2
0

0
1

4[(t − s)2 + 1]







[

1 1

1 1

][

x1(s)

x2(s)

]

ds .

Now, for all t ≥ 0 and for all x ∈ R2, we have,

β1(t,x)x2
1 =

{(

10

t + 1

)(

−tanh x1

20

)

+ (−20) · 1

+
1

2

[∣

∣

∣

∣

10

t + 1
· 1
∣

∣

∣

∣

+

∣

∣

∣

∣

10

t + 1
· 1
∣

∣

∣

∣

+

∣

∣

∣

∣

−20

(

−tanh x1

20

)∣

∣

∣

∣

+

∣

∣

∣

∣

−20 · tanh x2

20

∣

∣

∣

∣

]

+
1

2

[
∫

∞

t

1

(1 + u − t)2
· 1 du + 2

∫

∞

t

1

4[(u − t)2 + 1]
· 1 du

]

+

∫ t

0

1

(1 + t − s)2
ds

}

x2
1

=

{

− tanhx1

2(t + 1)
− 20 +

10

t + 1
+

1

2
[| tanhx1| + | tanhx2|] +

1

2

[

1 +
2π

8

]

+

[

1 − 1

1 + t

]}

x2
1 ,

which clearly shows that β1(t,x)x2
1 is continuous on [0,∞) × R2. Moreover

β1(t,x)x2
1 ≤ −

(

6 − π

8

)

x2
1 ≤ 0 .
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Next, we have,

β2(t,x)x2
2 =

{(

10

t + 1

)(

tanh x2

20

)

+ (−20) · 1

+
1

2

[∣

∣

∣

∣

10

t + 1
· 1
∣

∣

∣

∣

+

∣

∣

∣

∣

10

t + 1
· 1
∣

∣

∣

∣

+

∣

∣

∣

∣

−20

(

tanh x2

20

)∣

∣

∣

∣

+

∣

∣

∣

∣

−20

(

−tanh x1

20

)∣

∣

∣

∣

]

+
1

2

[

2

∫

∞

t

1

(1 + u − t)2
· 1 du +

∫

∞

t

1

4[(u − t)2 + 1]
· 1 du

]

+

∫ t

0

1

4[(t − s)2 + 1]
ds

}

x2
2

=

{

tanh x2

2(t + 1)
− 20 +

10

t + 1
+

1

2
[| tanhx1| + | tanhx2|] +

1

2

[

2 +
π

8

]

+
tan−1 t

4

}

x2
2 ,

which shows that β2(t,x)x2
2 is continuous on [0,∞) × R2. Moreover

β2(t,x)x2
2 ≤ −

(

7 − π

4

)

x2
2 ≤ 0 .

Hence, we have shown that βi(t,x)x2
i ≤ 0 for i = 1, 2, t ≥ 0 and x ∈ R2.

The zero solution of system (20) is therefore stable by Theorem 5.

3.2 Perturbed Case

We finally consider system (1), where h(t) = (h1(t), . . . , hn(t))T .

Theorem 6. Let the conditions of Theorem 5 hold, with the last condi-

tion replaced by the assumption that there are constants ci > 0 such that

βi(t,x) ≤ − ci for i = 1, . . . , n, t ≥ 0 and x ∈ Rn. If hi(·) ∈ L2[0,∞) for

i = 1, . . . , n, then all solutions of (1) are bounded.

Proof. Let ε > 0 and consider the functional

V6(t,x(·)) = V5(t,x(·)) +
1

4ε

n
∑

i=1

∫

∞

t

h2
i (u)du ,

which is clearly radially unbounded. Now, we have, for c = −min{c1, . . . , cn},
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t ≥ 0 and x ∈ Rn,

d

dt
[V6](1) ≤

n
∑

i=1

βi(t,x)x2
i +

n
∑

i=1

xihi(t) −
1

4ε

n
∑

i=1

h2
i (t)

≤ −(c − ε)

n
∑

i=1

x2
i .

We have thus proved the boundedness of solutions of (1), since we can always

find ε > 0 such that (c − ε) ≥ 0.

The following corollary follows directly from Theorem 6 by putting n = 1.

Corollary 2. Let the conditions of Corollary 1 hold, with the last condi-

tion replaced by the assumption that there is a constant c > 0 such that

β(t, x) ≤ − c for t ≥ 0 and x ∈ R. If h(·) ∈ L2[0,∞), then all solutions

of the scalar equation (15) are bounded.
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